CSC&CSM - Mathematics A

T039

Tuesday, 20/11/2018 08:30 - 11:30 AM WORKFORCE DEVELOPMENT AUTHORITY

P.O. BOX 2707 Kigali, Rwanda Tel: (+250) 255113365

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2018, TECHNICAL AND PROFESSIONAL STUDIES

EXAM TITLE:

MATHEMATICS A

OPTIONS:

Computer Science (CSC)

Computer Science and Management (CSM)

DURATION:

3 hours

INSTRUCTIONS:

The paper is composed of the following Sections:

Section I: Thirteen (13) compulsory questions.

55 marks

Section II: Attempt **any three (3)** out of five questions.

45 marks

All works must be done in the same booklet.

Silent, non-programmable scientific calculators may be used.

You may use a calculator and mathematical instruments.

Note:

Every candidate is required to carefully comply with the above instructions. Penalty measures will be applied on their strict consideration.

01. Solve

$$2^{4x+3} - 33(2^{2x-1}) + 1 = 0$$

5 marks

- **02.** Find the equation of the line through the given point perpendicular to the given equation: (7,2), y = 4 5x **4 marks**
- O3. Consider $(u_n)_{n\in\mathbb{N}}$ as an AP such that $u_8=27$ and $u_2+u_3+u_4=21$. Calculate the common difference; write u_n as a function of n.

5 marks

04. If
$$y = \sec x$$
, prove that $y \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2 + y^4$

4 marks

- **05.** Three horses A, B and C are in race; A is twice as likely to win as B and B is twice as likely to win as C. What are their respective probabilities of winning, it means P(A), P(B) and P(C)? **4 marks**
- **06.** Determine those values of t for which $\begin{vmatrix} t & 1 \\ 4t & t \end{vmatrix} = -3$ **3 marks**
- 07. Simplify the expression

$$\frac{\log_3\left(\frac{1}{3}\right)^{-3} - \log_3 243 + \log_3\left(27^{\frac{1}{2}}\right)^{\frac{8}{3}} + \log_3 a^3 + 1}{\log_3 a^2 + 2}$$

4 marks

08. Prove that
$$\frac{\sin A + \sin 4A + \sin 7A}{\cos A + \cos 7A} = \tan 4A$$

4 marks

O9. Show that 1 + i is a root of $z^4 - 4z^3 + 3z^2 + 2z - 6 = 0$. Hence find the other roots.

5 marks

10. Find $\int x^2 (4x^3 + 3)^4 dx$

100 × rom -50

4 marks

- Prove by distances that the three points (-2,3,5),(1,2,3) and (7,0,-1) are collinear.5 marks
- 12. The scores of 10 students in a test, in which the maximum marks were 50, were as follows: 28,36,34,26,48,24,35,27,21,41.Find the variance and standard deviation.4 marks

13. If the position vectors of the points A, B, C, D are $\vec{i} + \vec{j} + \vec{k}$, $2\vec{i} + 5\vec{j}$, $\vec{3}\vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{i} - 2\vec{j} - \vec{k}$, then find the angle between the vectors \overrightarrow{AB} and \overrightarrow{CD} .

Section II. Choose and answer any three (3) questions

45 marks

- **14.** a) Determine m in such way that the tangent on the curve $y = \frac{mx+1}{x+2}$ at the point x=2 is perpendicular to y = -2x + 1
 - **b)** Let f be the function $f(x) = \frac{2x^3 + kx^2 + 2}{x^2 4}$ with k a parameter. Find k such that two asymptotes cut at A (2,4).
 - **c.** Find $\int x^2 \ln x \, dx$

15 marks

- **15.** a. Determine the roots of the equation $z^3 + 64 = 0$ in the form of a + ib, where a and b are real.
 - **b.** If $\vec{a} = 2\vec{i} + 4\vec{j} 3\vec{k}$ and $\vec{b} = \vec{i} + 3\vec{j} + 2\vec{k}$, determine:
 - (i) the scalar and vector products,
 - (ii) and the angle between the two given vectors.

15 marks

- **16. a) Mr** Kabera makes one set of chairs at a time each new set produced costs 8 000 FRW more than the previous one. Given that the first set costs 22 000 FRW, determine the total amount of money he received when 54 sets are sold.
 - **b)** Given that $4x^2 5x + 1 = 0$ has roots α and β .

Find the values of;

$$\alpha^3 + \beta^3$$

c) Given α and $\alpha + 2$ are roots of $x^2 + 6x + q = 0$ and the roots of the equation

$$x^2 - qx + 8 = 0$$
 are α and $\alpha - 2$.

Find the value of q in the both cases.

15 marks

- a) Write down the expression for the volume V and surface area, S of 17. the cylinder of radius r and height h. If the surface area is kept constant, show that the volume of the cylinder will be maximum when h = 2r.
 - **b.** The values of the resistance of 90 carbon resistors were determined:

Resistance x	2.35	2.36	2.37	2.38	2.9	2.40	2.41
$(M\Omega)$							
Frequency (f)	3	10	19	20	18	13	7

Calculate:

- (i) the mode
- (ii) the standard deviation
- c. Solve the simultaneous equations:

$$\begin{cases} xy = 243 \\ 4(\log_y^x + \log_x^y) = 17 \end{cases}$$

15 marks

18. Given the function $f(x) = \frac{x^2 + 2x + 1}{x + 3}$

- (a) Find the domain of definition
- (b) Study the parity
- (c) Find the asymptotes to the curve
- (d) Compute the first derivative
- (e) Compute the second derivative
- (f) Sketch the graph of f(x).

15 marks

 $(x+3)^{2} = (x+3)(x+3)$ $= x^{2} + 3x + 3x + 7$ $= x^{2} + 6x + 9$ $= x^{2} + 6x + 9$ $= x^{2} + 6x - 3x$